Escuela Superior Politécnica del Litoral

Department of Biology

Handbook

Facultad de Ciencias de la Vida

2022-2023

en pol Escuela Superior Politécnica del Litoral

Contents

Biology Handbook 2022-2023

Welcome to the students	2
Mission	3
Vision	3
Aims of the program	4
Introduction	5
Program's Learning Outcomes	6
Faculty	9
Faculty	
Course Summary	
Curriculum	<u>VIUd.11</u>
Requirements	
Internships and Projects	
Professional skills	
Professional profile	
Biology Clubs and Student Organizations	

Escuela Superior Politécnica del Litoral

Welcome to the students

Department of Biology

Dear students, we welcome you to the biology course. We hope that this manual is useful for all of you; studying Biology can prepare you for a wide range of specialties.

If you like, science and challenges this career path is for you.

At Espol's biology department, you will have the opportunity to learn from some of the best academics in the specialty of Biology; they will guide you throughout your career not only inside classrooms, but also in field practices and inside the laboratory. It is important to mention that the biology faculty cares for each one of its students.

ulað

. . .

10

la

Mission

The mission of the biology department is to educate highly trained professionals that are able to understand living beings and their biological processes, to train professionals of

excellence in the Life Sciences such as biology with cultural, ethical, social environmental principles and values. Allowing undergraduates to evaluate the desires and needs of the human being, with the ability to promote the sustainable management

of the country's strategic natural resources (soil, water, air, subsoil, forests and biodiversity), and with research and management aptitudes necessary to tie together sustainability and participatory social networks through entrepreneurship and work with

the community.

Facuvisiond de

To be a referent in undergraduate and postgraduate training with international standards in the areas of Life Sciences and be recognized as a unit that generates solutions at the service of society and nature conservation.

Aims of the program

1. Be highly competitive in the field of biology at a national or international level, effectively applying the knowledge of the profession, considering the social, economic and environmental aspects in an ethical framework.

2. Be at the forefront of technical-scientific knowledge, and experience in the field of biology, in different cultural contexts, which allows the student to adapt in professional environments.

Ciencias de la Vida

3. Apply classic and innovative procedures for the use, conservation, sustainable management of biodiversity and environmental health.

4. Participate in productive projects or scientific research, in the area of their competence, in order to contribute to the development of society.

Introduction

The biology department is located in the Faculty of Life Sciences of the Escuela Superior Politécnica del Litoral; it was created on July 22, 2015 by resolution CES RPC-SO-28-No.364-2015. The ESPOL Polytechnic Council (Governing Board) created the Biology Program in 2004 and throughout its existence; the program has experienced several academic reviews (2008, 2009, 2012, 2016 and 2020). From its creation, until 2015, the Biology Program took place at the Maritime Engineering, Oceanography and Sea Science Faculty (FIMCBOR). As of 2015, the Biology Program was relocated and is now part of the Faculty of Life Sciences. It has more than 30 professors. The faculty authorities work hard to help students throughout their career. This manual is designed for all those students who wish to obtain a major in biology. This handbook provides important information that will help students throughout their careers. Students will be able to become familiar with the curriculum, faculty, and extracurricular activities.

Program's Learning Outcomes

Students who successfully earn a degree from ESPOL's Biology department will be able to:

- Apply knowledge of mathematics, science, and applied sciences in the field of biology.
- Design and perform experiments, as well as analyse and interpret biotic and abiotic data.
- Formulate or design a system, process or program to meet specific needs.
- Use scientific methods to identify and solve problems.
- Understand the impact solutions to specific problems have in a global and social context.
- Use modern scientific-technical techniques and tools necessary in their professional life.

Teacher	Investigation Area	Email
	Environmental Microbiology	
Marynes Montiel Romero	with emphasis on transmission of pathogens through water, air,	marymont@espol.edu.ec
	sediments, seafood and its impact	, <u> </u>
	on public health	
Luis Lenin Galarza Romero	Phytopathology and Microbiology	llgalarz@espol.edu.ec
Nardy del Valle Diez García	Protein-based bioproducts with the potential to transfer to industry.	ndiez@espol.edu.ec

Ciencias de la Vida

		Molecular Biology,	
	Publo Antonio Chong Aguirro	Phytopathology, Microbiology,	pachong@espol.edu.ec
	Pablo Antonio Chong Aguirre	and resistance to Fungicides.	pachong(aespoi.edu.ec
-	Freddy Arturo Magdama	Phytopathology	
	Tobar		frearmag@espol.edu.ec
-		Laboratory of Toxicological	
	Ana Jesenia Tirapé Bajaña	Research and Environmental	atirape@espol.edu.ec
		Health.	
	Diego Arturo Gallardo Pólit	Direction of integration projects.	dagallar@espol.edu.ec
ł	Lisbeth del Rocío Espinoza		
	Lozano	Entomology and plant protection	<u>ldespino@espol.edu.ec</u>
	Milton Senen Barcos Arias	Environmental remediation.	mbarcos@espol.edu.ec
	Paolo Michael Piedrahita	Zoology and biodiversity.	ppiedra@espol.edu.ec
	Piedrahita 7		
		Plant biotechnology, related to	Vide
		the identification of resistance	Vida
	Luis Eduardo Sánchez Timm	genes, as well as the genetic	lesanche@espol.edu.ec
		engineering of crops for the	
	0 0	characterization of genes	
	Carlos Roberto Burbano	Plant Biotechnology and	rburbanol@espol.edu.ec
	Villavicencio	Molecular Genetics.	
	Julio Andrés Bonilla Jaime	Plant and environmental	jabonill@espol.edu.ec
		biotechnology.	
	Jenny Antonia Rodríguez	Marine biodiversity and	
	León	biodiscovery applied to human	jenrodri@espol.edu.ec
	2001	and animal health.	
ŀ	Gustavo Adolfo Dominguez	Pollution and environmental	gdoming@espol.edu.ec
	Cazco	toxicology	gaoming@espoi.edu.ec
ľ	Juan Manuel Cevallos	Applied Microbiology	jmceva@espol.edu.ec
L			

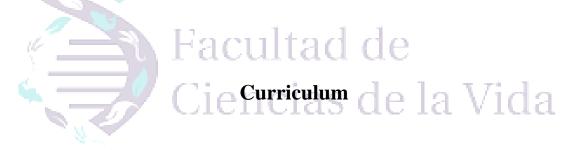
Cevallos		
Julie Ruth Nieto Wigby	Invertebrate physiology.	jnietow@espol.edu.ec
Félix Enrique Morales Ramos	Aquatic ecology and oceanography.	femorale@espol.edu.ec
Efrén German Santos Ordoñez	Biotechnology, Molecular Biology and Genetic Engineering	gsantos@espol.edu.ec
Fernanda Bertucces Cordeiro	Biomedicine.	fbertuc@espol.edu.ec
Katiuska Paola Calle Delgado	Ecotoxicology, environmental toxicology, environmental health and ecology.	pcalle@espol.edu.ec
Washington Bolívar Cárdenas Medranda	Molecular virology and immunology.	wbcarden@espol.edu.ec
Diego Fernando Quito Ávila	Plant biology.	dquito@espol.edu.ec
Ricardo Villalba Briones	Conservation of fauna and flora	rvillalba@espol.edu.ec
Andrea Sofía Reyes Chejin	Environment Axis	asreyes@espol.edu.ec
Daynet Sosa del Castillo	Agricultural biotechnology	dasosa@espol.edu.ec
Maria Fernanda Ratti Torres	Plant pathology and microbial communities	mratti@espol.edu.ec

Faculty

The life sciences faculty is located on the Main Avenue of the Escuela Superior Politécnica del Litoral in the city of Guayaquil; the facilities have offices, classrooms and laboratories for authorities and students. The faculty has several research laboratories for the biology students; it also has a greenhouse and a wide variety of green areas.

Core Requirements

Those who wish to study Biology at ESPOL must meet the following requirements:


- 1. The applicant must pass ESPOL's admission process.
- 2. The applicant must register on the SENESCYT web page.
- 3. The applicant must apply for their chosen career at ESPOL's admission web page.
- 4. The students who obtain a quota will be able to take the levelling course to enter their first semester in their chosen career.

Course Summary

Name of Program	Bachelor of Biology
Mode of the study	Full time
number of semesters	8 semesters
Normal length of the programme	4 years
Location of study	ESPOL
Accreditation (if applicable)	not applicable
Regulator	Office for Students

For the student to complete the study plan, they must complete 56 subjects with a total of 73 credits, of which: 65 credits belong to subjects that are compulsory, 2 credits to complementary subjects and 6 credits to subjects of the itinerary. The student will be able to start their community service practices when they have completed 60% of their university career. The student will be able to start their business practices when they have completed 70% of their degree.

Each semester students can take a maximum of 15 and a minimum of 12 total credits. Of the 73 total credits, 65% correspond to basic training subjects and the remaining 35% belong to professional training subjects.

SEMESTER	COURSE	TEACHING	CREDITS	TYPES OF	PREREQUISITE
		HOURS		COURSE	
FIRST	SINGLE VARIABLE	5	3	BASIC	THIS SUBJECT
SEMESTER	CALCULUS				HAS NO
					REQUIREMENTS
	GENERAL PHYSICS	4	3	BASIC	THIS SUBJECT
					HAS NO
					REQUIREMENTS
	GENERAL	4	3	BASIC	THIS SUBJECT
	CHEMISTY				HAS NO
					REQUIREMENTS
	PROBLEM	3	3	BASIC	THIS SUBJECT
	SOLVING				HAS NO
	- Fa	culta	d de		REQUIREMENTS
	COMPLEMENTARY	2	2	BASIC	THIS SUBJECT
	Cie	encia	s de	la V	HAS NO REQUIREMENTS
	ENGLISH 1	4	2	BASIC	THIS SUBJECT
					HAS NO
					REQUIREMENTS
	SUBTOTAL	22	16		
SECOND	CALCULUS OF	5	3	BASIC	SINGLE
SEMESTER	SEVERAL				VARIABLE
	VARIABLES				CALCULUS
	PROGRAMMING	4	3	BASIC	SINGLE
	FUNDAMENTALS				VARIABLE
					CALCULUS
	ORGANIC	4	2	BASIC	GENERAL
	CHEMISTRY				CHEMISTY

	GENERAL	4	2	BASIC	GENERAL
	BIOLOGY				CHEMISTY
	GENERAL BOTANY	4	2	PROFESSI	GENERAL
				ONAL	BIOLOGY
				UNIT	
	ENGLISH 2	4	2	BASIC	ENGLISH 1
	SUBTOTAL	25	14		
THIRD	STATISTICS	4	3	BASIC	CALCULUS OF
SEMESTER					SEVERAL
					VARIABLES
	COMMUNICATION	4	2	BASIC	6 APPROVED
					SUBJECTS
	BIOCHEMISTRY	4	2	PROFESSI	ORGANIC
	🚞 🖌 Fa	culta	d de	ONAL	CHEMISTRY
	CELLULAR AND	ancia	is ae	PROFESSI	GENERAL
	MOLECULAR			ONAL	BIOLOGY
	BIOLOGY			UNIT	
	INVERTEBRATE	4	2	PROFESSI	GENERAL
	ZOOLOGY			ONAL	BIOLOGY
				UNIT	
	SYSTEMATIC	3	2	PROFESSI	GENERAL
	BOTANY			ONAL	BOTANY
				UNIT	
	ENGLISH 3	4	2	BASIC	ENGLISH 2
	SUBTOTAL	27	15		

-		Polifecnica del Liforal				
	FOURTH	LIFE SCIENCES	3	2	PROFESSI	THIS SUBJECT
	SEMESTER	RESEARCH			ONAL	HAS NO
					UNIT	REQUIREMENTS
		SUSTAINABILITY	3	3	BASIC	20 APPROVED
		SCIENCES				SUBJECTS
		GENERAL	3	2	PROFESSI	GENERAL
		ECOLOGY			ONAL	BIOLOGY
					UNIT	
		GENERAL	4	2	PROFESSI	CELLULAR AND
		MICROBIOLOGY			ONAL	MOLECULAR
					UNIT	BIOLOGY
		ENTOMOLOGY	3	2	PROFESSI	INVERTEBRATE
					ONAL	ZOOLOGY
		- Fa	culta	d de	UNIT	
		VERTEBRATE	4 current	2	PROFESSI	INVERTEBRATE
		zoology Cit	encia	s de	ONAL UNIT	ZOOLOGY
		ENGLISH 4	4	2	BASIC	ENGLISH 3
		SUBTOTAL	24	15		
ſ	FIFTH	ENTREPRENEURSH	4	3	BASIC	20 APPROVED
	SEMESTER	IP AND				SUBJECTS
		INNOVATION				
		BIOSTATISTIC	3	2	BASIC	STATISTICS
		ECOSYSTEM	4	2	PROFESSI	ENTOMOLOGY
		ECOLOGY			ONAL	GENERAL
					UNIT	ECOLOGY
L			I	I	1	

	GENETICS	3	2	PROFESSI	GENERAL
			-	ONAL	MICROBIOLOGY
					MICKOBIOLOGI
				UNIT	
	EMBRYOLOGY	3	2	PROFESSI	GENERAL
				ONAL	MICROBIOLOGY
				UNIT	VERTEBRATE
					ZOOLOGY
	PLANT	2	2	PROFESSI	BIOCHEMISTRY
	PHYSIOLOGY			ONAL	SYSTEMATIC
				UNIT	
					BOTANY
	ENGLISH 5	4	2	BASIC	ENGLISH 4
	SUBTOTAL	23	15		
SIXTH	ENVIRONMENTAL	3	2	PROFESSI	ECOSYSTEM
SEMESTER	POLLUTION C	cuita	a ae	ONAL	ECOLOGY
SEWESTER	🗐 Ci	encia	s de	$\frac{UNIT}{2}V$	ida
	BIOINFORMSTICS	3	3	PROFESSI	BIOSTATISTIC
	S			ONAL	GENETICS
				UNIT	
	AQUATIC	4	2	PROFESSI	ECOSYSTEM
	ECOLOGY			ONAL	ECOLOGY
				UNIT	
	EVOLUTION	3	2	PROFESSI	EMBRYOLOGY
				ONAL	GENETICS
				UNIT	
	VIROLOGY	4	2	PROFESSI	EMBRYOLOGY
				ONAL	
				UNIT	
	SUBTOTAL	17	11		
		1	I	l	1]

	Politecnica del Litoral	-			
SEVENTH	INTRODUCTION TO	3	2	PROFESSI	BIOINFORMSTICS
SEMESTER	OMICS TOOLS			ONAL	
				UNIT	
	PRINCIPLES OF	4	3	PROFESSI	AQUATIC
	ECOTOXICOLOGY	-	5	ONAL	ECOLOGY
					ECOLOGI
				UNIT	ENVIRONMENTA
					LPOLLUTION
	BIOGEOGRAPHY	4	2	PROFESSI	EVOLUTION
			-	ONAL	2,0201101
				UNIT	
				UNII	
	IMMUNOLOGY	4	2	PROFESSI	VIROLOGY
				ONAL	
				UNIT	
	ANIMAL	3	21	PROFESSI	EMBRYOLOGY
	PHYSIOLOGY	culta	d de	ONAL	
	Cie	encia	s de		ida
	ITINERARY			PROFESSI	30 APPROVED
				ONAL	SUBJECTS
	~			UNIT	
		10			
	SUBTOTAL	18	11		
EIGHTH	ENVIRONMENTAL	4	2	PROFESSI	PRINCIPLES OF
SEMESTER	REMEDIATION			ONAL	ECOTOXICOLOGY
SEMESTER				UNIT	
		2	1	DACIC	THE CUDIECT
	COMPLEMENTARY	2	1	BASIC	THIS SUBJECT
	2				HAS NO
					REQUIREMENTS
	INTEGRATIVE	3	3	PROFESSI	44 APPROVED
	SUBJECT OF			ONAL	SUBJECTS
	BIOLOGY			UNIT	

ITINERARY			PROFESSI	30 APPROVED
			ONAL	SUBJECTS
			UNIT	
SUBTOTAL	9	6		
TOTAL	165	73		

Learning outcomes

The following table shows the learning outcomes for each subject. The learning outcomes are what students learn in the program.

COURSE	LEARNING OUTCOMES				
SINGLE VARIABLE	1 Apply topological notions for the calculation of limits and continuity				
CALCULUS	analysis. 2 Analyse the behaviour of functions of a real variable using limit				
	conditions, continuity and derivability.				
	3 Interpret the solutions in problems of approximation, rate of change and				
	extreme values, using differential calculus.				
	4 Obtain antiderivatives through various integration techniques.				
	5 Solve calculation problems of areas, volumes, and arc lengths, using the				
	definite integral.				
GENERAL PHYSICS	1 Describe the phenomena of particle movement and the use of magnitudes				
	physical for the introduction to the basic concepts of this science.				
	2 Apply Newton's laws for particles and the concepts of quantity of linear				
	motion in solving basic mechanics problems.				

First semester

espel Escuela Superior Politécnica del Litoral

	Politécnica del Litoral	
	3 Understand the principle of conservation of energy and the different forms	
	of energy in thermodynamics as a basis for understanding motion and	
	behaviour of particles, bodies, and materials.	
	4 Exemplify applications of electromagnetic principles for life situations	
	every day.	
GENERAL CHEMISTY	1 Understand the changes that occur in substances, pure and in mixtures,	
	from the knowledge of their physicochemical properties and the dynamics of	
	their mixtures and reactions.	
	2 Apply the laws, principles, and basic concepts of chemistry to solve	
	problems related to the contents of the program.	
	3 Interpret the principles that govern the physicochemical phenomena	
	studied, applying them in laboratory tests.	
PROBLEM SOLVING	1 Identify problems using research and empathy tools to deeply understand	
	them. Facultad de	
	2 Define a problem using different systematic and methodological processes	
	of Design Thinking to generate innovative solutions.	
	3 Propose innovative solutions using prototyping and validation tools to	
	evaluate their desirability, feasibility, and viability.	
	4 Argue how a solution proposal satisfies identified need(s) through the	
	application of communication techniques.	
ENGLISH 1	1 To understand the main ideas of a monologue or dialogue from a familiar	
	topic.	
	2 To examine information on texts whose topics are family, society, and	
	education topics.	
	3 To develop oral communication using dialogues, interviews, conversations	
	or simple presentations about familiar topics.	
	4 To write short texts on everyday topics using the vocabulary and	
	grammatical structures learned.	
	1	

Second semester

COURSE	LEARNING OUTCOMES
MULTIVARIABLE CALCULUS	1 Solve problems in three-dimensional analytical geometry using the concepts of surfaces, lines, and planes.
	 2 Analyse the results of limits, continuity, derivability, and differentiability of functions of several variables using definitions and theorems. 3 Solve approximation and optimization problems, using the notion of gradients.
PROGRAMMING FUNDAMENTALS	1 Apply computational methods to solve problems in their field of study using a programming language.
	2 Use computational tools to model and understand data.
	3 Apply recipe algorithms in problem solving.
	4 Use a development environment to write and debug programs.5 Use modularization to simplify the structure of a program.
ORGANIC	1 Use the IUPAC nomenclature system for the molecular formulation and
CHEMISTRY	structural drawing of organic compounds.
	2 Establish the relation between the chemical structures of organic
	compounds with their physical properties and industrial application.
	3 Perform laboratory tests for the characterization of functional groups in
	simple organic substances.
	4 Apply unit operations in the laboratory for the isolation and purification of an organic compound from a mixture.
GENERAL BIOLOGY	1 Connect biology with other sciences as a scientific tool for the study of
	living organisms.
	2 Study the biological molecules, the cell, its components, how it works and
	reproduces to understand the essential basis of life.

	3 Understand the genetic bases of inheritance that determine how genes
	interact and express in biological and technological processes that govern life.
GENERAL BOTANY	 1 Recognize the role of plants in the biosphere to appreciate their influence in the development of ecosystems and humanity. 2 Study the various types of plant cells and tissues, as well as the
	characteristics morphological and anatomical for the identification of plant structures.
	3 Analyse the general concepts about the natural history of plants, their origin and dispersion centres, as well as the systematic bases for their adequate identification and taxonomic classification.
ENGLISH 2	 1 Understand conversations and audios of everyday scenarios to identify the main ideas. 2 Analyse information from academic and everyday texts to understand the main ideas. 3 Develop oral communication through conversations, discussions and/or presentations on familiar topics. 4 Prepare academic paragraphs using an intermediate level of English.
6	~

Third semester

STATISTICS	 Statistical analysis of data to turn it into useful information Associate everyday situations using models of continuous or discrete random variables. Apply statistical inference that identifies and minimizes risks in decision- making
COMMUNICATION	1 Analyse with a critical sense the disciplinary and contemporary discourse, through the reading relevant texts for a holistic understanding of academic information.

en pol

	2 Produce contemporary-academic written texts in the structure of a Report
	academic, for the configuration of its organized, coherent written expression, in
	accordance with the academic literacy.
	3 Explain orally academic and contemporary content, within the framework
	of regulations of communicational behaviour for the formation of an academic
	speech effective.
BIOCHEMISTRY	1 Solve conceptual problems applying biochemical knowledge in the field of
	Biological Sciences.
	2 Understand the chemical and molecular bases of the biomolecules that
	constitute life for the recognition of the metabolic processes that take place in
	living beings
	3 Apply basic analytical techniques for the identification of biomolecules and
	interpretation of results
CELLULAR AND	1 To understand the structure and function of cellular membrane, cytoskeleton
MOLECULAR	and organelles.
BIOLOGY	2 To describe the energy flux and metabolic process that occur in the cells.
	3 To recognize the worth of molecular and biochemical process which lead
	information genetic expression
INVERTEBRATE	1 Recognize the anatomical, physiological, and ecological characteristics of
ZOOLOGY	the different phyla for the identification of evolutionary distances.
	2 User the taxonomic keys to classify invertebrates by means of current
	scientific terminology.
	3 Apply the techniques of observation, collection, and preservation and healing
	of invertebrates, for the creation of biological collections.
SYSTEMATIC	1 Understand principal taxonomic characters through specialized information
BOTANY	for the study of plant biodiversity in an ecosystem.

espel Escuela Superior Polificacia del Litoral

	2 Analyse the taxonomic classification systems and scientific nomenclature by
	means of plant systematics-related criteria for the identification of the main plant
	groups.
	3 Compare different taxonomic keys through guides developed for the
	classification and identification of biodiversity and plant specimens.
ENGLISH 3	1 Examine a variety of audios through interviews, conversations, discussions,
	and lectures to promote experience and knowledge on listening skills.
	2 Analyse the information in texts on contemporary issues through articles in
	the guidebook and investigations that allow the development of comprehensive
	reading skills.
	3 Practice exchanging arguments through debates, discussions, and
	conversations on contemporary and academic topics to promote oral fluency.
	4 Develop compositions in a structured way, using thematic ideas, supporting
	ideas, details, examples, and conclusion to improve writing skills

Cierourts innester de la Vida

Logically and coherently formulate research problems from questions or
bservations based on potential ideas to find solutions and generate new
nowledge.
Contrast the different research approaches (qualitative and quantitative) for
he design of research proposals.
Apply the scientific method for the development of a research project in
ife sciences.
Relate environmental, economic, and social variables as the central axis of
ustainability by applying basic sciences to understand the importance of
ustainability.
Develop critical thinking through the reflection of ethical values, norms
nd practices, for the adoption of a position in the discourse of sustainability.

en pol Escuela Superior Politécnica del Litoral

Polifecnie	ca del Litoral
	3 Propose solutions to complex sustainability problems at the local, regional
	and global levels for the analysis of alternatives that contribute to sustainable
	development.
	4 Analyse ethical and professional responsibilities in work situations, making
	informed judgments, considering the impact of solutions in global, economic,
	environmental and social contexts.
GENERAL ECOLOGY	1 Distinguish the hierarchical levels within an ecosystem to understand the
	patterns and processes that result from the interaction of living beings in their
	natural environment.
	2 Examine ecological processes by using diverse tools such as mathematical
	models, statistical calculations, and computer simulations software.
	3 Compare ecological interactions between organisms and the environment
	to interpret ecological concepts of populations and communities.
GENERAL	1 Identify the different groups of microorganisms found in the environment
MICROBIOLOGY	through the performance of phenotypic and molecular methods.
	2 Discover the metabolic paths that microorganisms use in order to obtain
	nutrients and energy for their survival in different types of environments.
	3 Discover the main features to be considered in order to select
	microorganism models for scientific research and the development of
	biotechnological processes
ENTOMOLOGY	1 Identify the basic parts of insects and their morphological characteristics
	suitable for taxonomic classification.
	2 Correctly differentiate each of the insect orders and their functions to its
	potential use in biological and productive processes.
	3 Execute different methods of collection, assembly and preservation of insects
	for their correct identification using taxonomic keys and their applications in
	scientific studies.
VERTEBRATE	1 Recognize the characters of each group of vertebrates by studying their
ZOOLOGY	taxonomy to understand their phylogenetic classification.

espel Escuela Superior Politécnica del Litoral

Point	ecnica del Litoral
	2 Relate the morphological and physiological adaptations of the different
	vertebrate lineages through the study of the ecological niches of representative
	species.
	3 Infer on the evolutionary mechanisms of vertebrates for the identification
	of diversity patterns in different ecosystems.
ENGLISH 4	1 Identify the general idea and specific arguments, through audios of
	conversations, conferences or interviews, for the effective development of the
	comprehension ability.
	2 Develop the oral ability through conversations or discussions in pairs or
	groups, about events and personal or professional experiences, for the
	improvement of the communication and oral fluency.
	3 Perform a presentation with information related to the academic and
	personal interests to practice for future professional talks.
	4 Structure a persuasive essay, using an upper-intermediate level of English
	to develop the academic writing abilities.
	5 Examine, through reading exercises, information of articles, reports, news
	and talks to comprehend different kinds of topics.
6	Fifth semester
=/	r nui sentestei

Fifth semester

ENTREPRENEURSHIP	1 To assess the importance of developing our own entrepreneurial skills to face
AND INNOVATION	the difficulties and benefits of the entrepreneurial process for professional life.
	2 To research the environment to recognize problems, needs and opportunities to create value for society.3 To apply tools for the design of business models related to innovative
	products / services using valid reference frameworks.
BIOSTATISTIC	 Properly obtain experimental or observational data, with the proper statistical support. Identify factors that contribute to the variability of biological responses.

	3 Analyse data from living beings and their environment, obtained from	
	relational or causal studies, to make statistically supported decisions.	
	4. – Discuss, orally and in writing, the results obtained in a scientific	
	investigation; presenting the findings numerically or graphically in an	
	appropriate way, with a scientific approach.	
ECOSYSTEM	1 Explain the pathways, efficiency, and energy flow constraints in ecosystems	
ECOLOGY	for a better understanding of productivity dynamics and material decomposition.	
	2 Describe the main ecosystem features and the tools used by ecologists for a	
	deep analysis and management of ecosystems.	
	3 Identify the regional patterns that determine the diversity of ecosystems in	
	Ecuador to understand the possible strengths and weaknesses including their	
	structures and processes.	
GENETICS	1 Describe the genotypic and phenotypic patterns for the analysis of the	
	transmission of hereditary characters through the study of molecular mechanisms and the laws of Mendel.	
	2 Analyse the factors that alter gene expression by studying the pre- and posttranscriptional modifications.	
	3 Validate the fundamentals of recombinant DNA by studying molecular	
	techniques and genetic engineering for the characterization of organisms.	
EMBRYOLOGY	1 To describe the processes of production and cell differentiation during	
	gametogenesis and fertilization, to compare the life cycles of different organisms.	
	2 To identify anoticl relations of ambruos during different phases of	
	2 To identify spatial relations of embryos during different phases of development, by identification of relevant structures.	
	3 To relate morphological, cell, and molecular aspects of developmental	
	biology of different embryos to comprehend evolutionary changes and organism	
	adaptation capacity	

espel Escuela Superior Politécnica del Litoral

PLANT PHYSIOLOGY	1 Describe the water relations between soil, plant, atmosphere and properties
	of water for understanding the functions of essential element transport and
	metabolism on the plant.
	2 Analyse photosynthesis as a form of autotrophic feeding, for understanding
	of the photosynthetic mechanisms that plants present according to the adaptation
	to the environment in the that they inhabit
	3 Relate the physiological functions of plants with their environment for the
	proposal of management alternatives for ecological systems.
ENGLISH 5	1 To identify the general idea and specific arguments in conversations through
	talks and videos.
	2 To examine information from complex texts, through a variety of readings
	on contemporary topics, facilitating autonomous learning of the English
	language throughout life.
	3 To discuss familiar topics through conversations without prior preparation.
	4 To formally present a topic by making a presentation of information related
	to their academic and / or personal interests.
	5 To structure a persuasive essay using an upper-intermediate level of English
0	1

Sixth semester

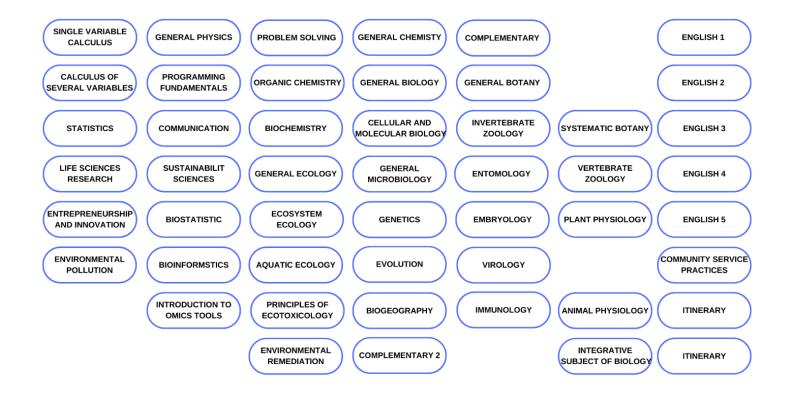
ENVIRONMENTALPO	1 Interpret the units of measurements used in the determination of pollutants
LLUTION	in the environment using graphs, statistical calculations, and analysis of the
	scientific literature.
	2 Apply the basic concepts and descriptions of pollution science to determine
	and evaluate the impacts caused by pollution in the environment.
	3 Analyse the effects caused by pollutants in the environmental matrices to
	implement better strategies for the environmental pollution prevention.

en pol

Politécnica del Litoral	
BIOINFORMSTICS	1 To identify bioinformatics problems for the appropriate selection of tools for
	the management and processing of complex processes.
	2 To apply bioinformatics tools for the interpretation of massive data of
	biological origin.
	3 To evaluate the results obtained by bioinformatics analysis for the
	understanding of biological principles at the level of DNA, RNA, and protein
	level.
AQUATIC ECOLOGY	1 Explain ecological patterns and processes at different scales through the
	comparative analysis of organizational structure to understand the functioning
	of aquatic ecosystems.
	2 Differentiate the main biotic and abiotic components through field and
	laboratory studies to understand the heterogeneity of processes and influential
	phenomena.
	3 Analyse the physical, chemical, and biological factors that regulate the
	ecological processes of aquatic systems for the understanding of their dynamics.
EVOLUTION	1 To comprehend the evidence that support evolutionary biology, by studying
	theories that scientifically describe morphological and genetic aspects of studied
	organism.
	2 To identify the relation between genetics and evolutionary changes in
	different populations, by studying molecular events that support population
	dynamics and biodiversity.
	3 To compare microevolution and macroevolution roles, by identifying
	evolutionary mechanism that will contribute to the development of different
	taxon.
VIROLOGY	1 To understand the viral replication and transcription processes for
	determining their infectious nature.
	2 To distinguish the diverse mechanisms of antiviral immune responses in
	order to develop strategies for the induction of virus resistance.
	3 To apply fundamental knowledge for implementing epidemiological studies.

Seventh semester

INTRODUCTION TO	1 To evaluate the importance of the different omics tools for their applications
OMICS TOOLS	in biological systems.
	2 To analyse the physiological state of biological systems using omics tools.
	3 To argue the scope of the omics tools through the analysis of biological systems.
PRINCIPLES OF	1 Analyse the pollutants disposal and biotransformation to understand the
ECOTOXICOLOGY	intake, distribution, metabolism, and elimination processes in living beings.
	2 Analyse the pollutant effects at the individual, population, community, and
	ecosystem levels by understanding the pollutant implications for the
	environmental health.
	3 Analyse the pollutant effects on the biota by using bioassays.
	4 Propose risk management measures in the face environmental contamination situations.
BIOGEOGRAPHY	1 Understand the role of historical factors that shape biodiversity through the
	study of its distribution and species richness.
	2 Identify the predictive parameters for understanding how biodiversity responds to a constantly changing environment.
	3 Infer about the distribution and abundance of species through the application
	of phylogenetic models of population analysis to understand diversity change
	biology over time.
IMMUNOLOGY	1 Describe the main components of the innate and acquired immune response
	that organisms use at the cellular and molecular level to fight foreign molecules
	2 Relate the immune response to pathogenesis caused by bacteria, viruses,
	cancer, autoimmunity, and tissue transplant.



	3 Relate the immune processes to their application to the industry in diagnostics
	and treatments
ANIMAL	1 Recognize that the animal organization requires a continuous flow of energy
PHYSIOLOGY	through the construction of the metabolic pathways of animals, using nutrients
	as sources of biomolecules.
	2 Describe the mechanisms of regulation of homeostasis, integrating the
	components and functions of the circulatory, respiratory, and excretory systems
	of vertebrates and invertebrates for the assessment of the role of each animal
	function in maintaining the balance of the internal environment.
	3 Identify the neuronal and hormonal systems, analysing their mechanisms of
	integration and physiological control to recognize that animals coordinate and
	integrate all their functions.

Fa Eighth semester de		
ENVIRONMENTAL	1 Comprehend the scientific and technological principles of remediation	
REMEDIATION	methods applied to a polluted ecosystem or site.	
	 2 Analyse the different restoration technologies for the selection of the appropriate methodologies for a polluted ecosystem or site. 3 Evaluate the restoration grade of the polluted site once the remediation method has been applied. 	
INTEGRATIVE	1 Identify the problem/need through the study of the requirements of the	
SUBJECT OF	client, user, or public.	
BIOLOGY	 2 Analyse the different critical factors for proposing solutions to the identified problem/need. 3 Design alternative solutions and/or prototypes using methodologies 	
	inherent to biology.4 Generate a feedback process on the alternative of the designed solution.	

Curriculum

Requirements

For students to be able to stay in the biology course, it is necessary to meet a series of academic requirements. These requirements are intended to help students make adequate progress toward achieving the goal of earning a biology degree.

• Minimum grade of 6.0 in all subjects

Students who do not reach this required grade on their final grade for the first time will fail the class and have another opportunity to repeat the subject. If students do not reach the grade of 6.0 on their second attempt, they would need to formally appeal to the authorities in order to get another opportunity to repeat said class. In the case of a student's request being rejected, the department will withdraw said student from the course. As a last point, the student will have the opportunity to meet up with the relevant authorities and decide if they wish to study a new career that does not involve the failed class on its syllabus.

Facultad de Ciencias de la Vida Internships and Projects

Espol's Biology department offers students learning opportunities through internships and research. Students have the chance to work alongside their professors on important research projects thanks to the internship program, where students often work in laboratories, fields and industries. In this programme, students may work on institutions such as (but not limited to):

CIBE

CENAIM

BIOMED

INSPI

BDP

en pol

Professional skills

The graduates of the Biology career, whose professional training axes are Biotechnology, Environmental Biology and Biodiversity, are professionals of excellence with cultural, ethical, environmental and social principles and values; with solid and up-to-date knowledge of living beings from the molecular level to their interaction in different ecosystems. After 4 years of study, you will be able to: Recognize problems related to living beings through the study of Biology. Promote the sustainable management of the country's strategic natural resources soil, water, air, subsoil, forests and biodiversity. Link and participate, with investigative and management aptitude, in projects with multidisciplinary groups at a national and international level.

Ciefficial profile la Vida

The profile of our graduates is required in the public sector because the career it is aligned with conservation, biodiversity, and environmental quality; chores exclusive to the Central Government and the Decentralized Autonomous Governments.

Facultad de

Other development spaces for our graduates are in the sector private, both in environmental consulting agencies, NGOs, laboratories associated with the field of Biotechnology and in the productive sector, (example shrimp farms).

Biology Clubs and Student Organizations

Students who are studying the Biology program at Escuela Superior Politecnica del Litoral can join and take part in activities organized by various clubs and organizations of the university. For example:

Biosoc

Biosoc is an organization created by a group of Biology students whose purpose is to contribute to the professional growth of all students in the career.

Miel del bosque

Miel del Bosque is a club created by a group of teachers and students. This club allows the students to oversee honey production.

Siological Society

ESPOL

