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Abstract

A standardized protocol for Agrobacterium-mediated transformation of Pinus 
pinea (stone pine) embryogenic callus is presented after testing the effect of factors 
such as amount of initial tissue, infection period, bacterial dilution, acetosyringone 
concentration, plasmid constructions, and Agrobacterium strains. Transient GUS 
(beta-glucuronidase) gene expression was used to monitor T-DNA delivery into 
targeted cells. The most efficient concentrations of the selective agents (kanamycin 
and phosphinothricin) have been also determined. Significant genotypic variations 
in response to transformation were observed between the two embryogenic lines 
tested. Infection of 12 g calli with Agrobacterium for 5 min, including 1 minute 
vacuum, followed by co-cultivation for 3 days was found to be optimum for maximum 
transformation efficiency. Among constructions, AGL1 strain harboring pTAB16 plasmid 
at an OD of 0.8, with 200µM acetosyringone significantly increased DNA delivery 
into the cells. Selection of transformed tissue required 1 mg phosphinothricin or 5 
mg/l kanamycin. The optimized protocol would be useful for Agrobacterium-mediated 
genetic transformation of stone pine for genetic and agronomical studies.

ABBREVIATIONS
AS: Acetosyringone; GUS/gusA: Betaglucuronidase; Kan: 

Kanamycin; MLV: Modified Litvay Medium; MS: Murashige 
and Skoog medium; NOS: Nopaline Synthase Promoter; nptII: 
Neomycin Phosphotransferase; OD: Optical Density at 600nm; 
PPT: Phosphinotricin; SE: Somatic Embryogenesis

INTRODUCTION
Pinus pinea L. (stone pine) is an economically important forest 

species of the Mediterranean region, where it has been widely 
cultivated due mainly to the high economic value of its seed crops 
[1]. Besides its agronomical value, the species is also used for 
ecological and ornamental purposes. Stone pine is characterized 
by a very low genetic variation and high adaptative plasticity [2]. 
Thus, the species is well adapted to the high temperatures and 
drought characteristics of Mediterranean climates; also it is less 
sensitive to diseases and pests than other Mediterranean pines, 
particularly to the pine wilt nematode Bursaphelenchus xylophilus 
[3]. In spite of these environmental adaptations, seed production 
vary annually mainly due to water shortage [4]. Recently, several 
studies on gene expression and epigenetic variability under 
drought stress have been described [2,5]. Further research 
on assessments of gene function requires the generation of 
mutants or transgenic plants with altered gene expression [6]. 
Protocols for Agrobacterium-mediated transformation from 

stone pine isolated cotyledons have been described [7]. However, 
the advantages of somatic embryogenesis (SE), particularly 
maintenance of regeneration potential by cryopreservation while 
the testing of clones is in progress [8], prompted to develop SE 
protocols for this species firstly described by Carneros et al. [9]. 
In the present work the conditions for an efficient DNA delivery 
into stone pine embryogenic lines are reported.

MATERIALS AND METHODS

Plant material and tissue culture

Pinus pinea embryogenic lines (1F11 and 7F11) used in 
this study were generated as described in [9] and provided 
by Dr. Mariano Toribio (Instituto Madrileño de Investigación 
y Desarrollo Rural, Agrario y Alimentario, IMIDRA, Spain). 
Embryogenic lines were maintained by subcultures to fresh mLV 
medium [10] every two weeks. Embryogenic calli, grown for 4 
days after their transference to fresh medium, were used in all 
experiments.

Bacterial strains and plasmids 

Agrobacterium tumefaciens AGL1 [11], EHA105 [12], C58 
[13], and GV3101 [14], strains and plasmid constructions pABC, 
pBIN35SGUSINT, pBINUbiGUSINT and pTAB16 were used in 
the experiments. To facilitate transient expression assays, all 
constructions included GUS (gusA) gene driven by the CaMV35S 
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promoter, unless otherwise stated. This gene is not expressed 
in A. tumefaciens due to the insertion of an intron plant in the 
protein-coding region. The pABC plasmid [15] carries the 
Atwbc19 gene that confers tolerance to kanamycin (Kan), driven 
by the CaMV35S promoter (gift of Dr. Neal Stewart, University 
of Tennessee; USA). The pBIN35SGUSINT plasmid contains the 
neomycin phosphotransferase (nptII) gene, controlled by the nos 
(nopaline synthase) promoter. This gene confers Kan resistance 
[16]. The pBINUbiGUSINT plasmid contains the nptII gene driven 
by the nos promoter, but the gusA gene is under the control of 
the ubiI maize polyubiquitin promoter [7]. The pTAB16 plasmid 
includes the bar gene, which confers phosphinothricin (PPT) 
tolerance, driven by the CaMV35S promoter [11]. 

Bacterial strains were cultured in LB (Luria Broth) medium 
for 16 hours at 28°C in a horizontal orbital shaker (200 rpm), 
with appropriate antibiotics to reach the desired optical density 
(OD). LB medium for AGL1 strain cultures also contained 0.4 g/l 
of MgSO4. The antibiotics used were rifampicin (50 µg/ml) for 
selection of AGL1 strain, rifampicin (50 µg/ml) and tetracycline 
(5 µg/ml) for the C58 strain, nalidixic acid (30 µg/ml) for the 
EHA105 strain, gentamicin (25 µg/ml) and tetracycline (5 µg/
ml) for the GV3101 strain, tetracycline (5 µg/ml) for the pTAB16 
construction and Kan (50 µg/ml) for the pBIN35SGUSINT, 
pBINUbiGUSINT and pABC constructions.

Transformation experiments

Unless otherwise stated, the bacterial suspensions were 
centrifuged (3000 rpm, 20 min) and the precipitate resuspended 
in MS liquid medium [17] to reach the desired OD600 and 100 µM 
acetosyringone (AS) was added. For infection, equal volumes of 
bacterial suspension and tissue (6 g/50 ml mLV) were mixed in a 
125 ml kitasato flask and 1 min vacuum infiltration was applied. 
Ten minutes later, the mix was recovered on 55 mm Ø Whatman 
no. 2 filter paper and placed on absorbent paper to drain excess 
liquid. The filter paper was placed on semi-solid mLV medium 
without casein hydrolysate for a 3 days co-culture period at 25 ± 
2 ºC in darkness. 

To optimize Pinus pinea transformation conditions, the effect 
of different parameters on DNA delivery were sequentially 
assayed. These included initial amount of calli (6 or 12 g/50 
ml of mLV); infection period (5 or 10 min); bacterial dilution 
(OD600 0.3 or 0.8); AS concentration (100 vs. 200 µM); plasmids 
(pABC, pBIN35SGUSINT, pBINUbiGUSINT and pTAB16) and 
Agrobacterium strains (AGL1, EHA105, GV3101 and C58). Four 
replications were prepared for each experiment and transient 
GUS expression was determined after 3 days coculture. 

GUS histological assay

A histological assay for GUS transient expression was 
performed 3 days after co-culture. Filter paper with infected 
calli was deposited into 60 mm Ø empty plates, with 2 mL of the 
reagent mix described by Jefferson et al. [18] containing 2 mM 
5-bromo-4-chloro-3-indolyl glucuronide (X-Gluc), and incubated 
at 37ºC for 16 h in the dark. Then, each plate was examined 
microscopically and the number of foci (areas of blue cell 
staining) was recorded.

Sensitivity to selection agents 

The concentrations of two selective agents (Kan and PPT) 
that inhibited growth of untransformed tissue were determined. 
To this end, 0.5 g of each embryogenic line was suspended in 5 
ml mLV liquid medium. The mix was softly shacked and poured 
on a Buchner funnel with a 70 mm Ø Whatman filter paper. After 
draining, aided by a final vacuum pulse, the filter paper with 
embryogenic cells was transferred to petri dishes containing 25 
ml of semisolid mLV medium with PPT (0, 2, 4 or 6 mg/l) or Kan 
(0, 5,10, 20 or 30 mg/l). Glutamine and casein hydrolysate were 
excluded from PTT-supplemented media. Three replicates were 
performed per treatment and calli fresh weight was determined 
after two weeks in culture.

Statistical analysis 

Significance of the different treatment effects on transient GUS 
expression was determined using analysis of variance (ANOVA). 
Percentage data were subjected to arcsine transformation prior 
to statistical analysis. Variation among treatments means was 
analyzed using the Tukey´s procedure [19]. All statistical analyses 
were performed using SPSS Statistics 20.0.0.

RESULTS AND DISCUSSION

Effect of initial tissue amount

Six or 12 g of the 1F11 embryogenic line were infected with 
AGL1-pTAB16 (OD600 0.8). The infection of 12 g tissue produced 
ten times more transient GUS expression than 6 g tissue (291.0 
vs. 27.3 blue foci per plate, respectively p ≤ 0.05). Similar rates 
(10 mg/50mL of embryogenic cells) were successfully used to 
transform other pine species [20-22]. Based on these results, 12 
g/50 ml mLV of callus was selected for subsequent experiments.

Effect of infection period

Twelve g of 1F11 and 7F11 embryogenic lines were infected 
with AGL1-pTAB16 (OD600nm 0.8) for 5 or 10 min. No significant 
differences were observed between the embryogenic lines, but a 
5 minutes infection period was significantly more effective (p ≤ 
0.05) than 10 minutes (232.0 blue foci versus 60.0, respectively). 
Five min infection also produced the highest transformation 
rates from stone pine cotyledons [7]. However, shorter period of 
infection have been used on Pinus radiata [20] and Pinus pinaster 
(maritime pine) [23]. Five minutes infection period was selected 
for subsequent experiments.

Effect of bacterial dilution

The effect of two AGL1-pTAB16 bacterial dilutions (OD600 
0.3 and 0.8) was tested on 1F11 and 7F11 lines. An OD600 of 0.8 
increased GUS expression on both embryogenic lines (average of 
173.1 blue foci vs. 25.1, for an OD of 0.8 and 0.3, respectively; p 
≤ 0.05). Similar results were previously reported for cotyledon 
transformation of the species [7]. On the contrary, bacterial 
dilution did not affect GUS transient expression on Pinus pinaster 
embryogenic lines [23]. An OD of 0.8 was selected for subsequent 
studies.

Effect of AS concentration 

Three different AS concentrations (0, 100 and 200 µM) in the 



Central

Arrillaga et al. (2016)
Email: 

JSM Genet Genomics 3(3): 1020 (2016) 3/5

bacterial dilution medium used for infection of 1F11 and 7F11 
embryogenic lines were tested. Irrespective of the embryogenic 
line, the highest AS concentration favored significantly GUS 
transient expression (average of 462.1, 178.2 and 38.6 blue foci 
for 200, 100 and 0 µM AS, respectively; p ≤ 0.05). The interaction 
between AS concentration and the embryogenic line was also 
significant, bests results being obtained on 1F11 line and AS 200 
µM, where a mean of 647.7 blue foci were observed (Figure 1 & 
Table 1). In some conifers, adding AS to the coculture medium 
increases transient expression [21,24-25]. On the contrary, in 
Pinus pinaster AS did not increase GUS expression [23,26]. A 
concentration of 200 µM AS was selected for further studies.

Effect of plasmid constructions

 Plasmids pABC, pBIN35SGUSINT, pBINUbiGUSINT and 
pTAB16 integrated into AGL1 strain were assayed. Regardless 
of the embryogenic line, pTAB16 plasmid was more effective in 
terms of transient GUS expression especially on line 1F11 (Table 
2). The pTAB16 plasmid had not been previously assayed to 
transform Pinus species although the bar gene was already used 
for maritime pine transformation [22]. 

Effect of bacterial strains

Lines 1F11 and 7F11 were infected with AGL1, EHA105, 
GV3101 or C58 strains harboring the pBIN35SGUSINT plasmid. 
Irrespective of the embryogenic line, AGL1 induced the highest 

levels of GUS expression (average of 323.1 blue foci/plate vs. 6.8 
and 0.0 for EHA105 and each of the GV3101 and C58 bacterial 
strains, respectively; Table 3). The low susceptibility of stone pine 
embryogenic tissue to EHA105 and C58 infection was not found in 
other pine species. Thus, although C58 strain was also ineffective 
to transform stone pine cotyledons, EHA 105 successfully did it 
[7], and C58 is being routinely used to transform maritime pine 
[23]. AGL1 was also effective to transform radiata pine cotyledons 
[27], nevertheless, its effect on embryogenic lines from maritime 
pine seems to be genotype-dependent [23,28]. 

Selective agent’s sensitivity

In both embryogenic lines, callus growth was significantly 
reduced by all Kan and PPT concentrations tested. Growth 
reduction percentages ranged from 40 to 90% (data no shown). 
Thus, 5-10 mg/l Kan or 1-2 mg/l PPT can be used to select 
transformed stone pine tissue. Similar concentrations have been 
used to select another pine species [22,27]. 

Our results do not differ substantially from those previously 
reported for other Pinus species except for the requirement of 
higher AS concentration, and for the high infection capability of 
AGL1 which can be explained by the presence of extra virulent 
factors in this strain [29]. The variability detected in the mean 
number of GUS foci among different series of similar experiments, 
even when the same infection protocol was used, might be 
due to the metabolic state of the tissue, including its degree of 

Figure 1 Effect of AS concentrations (0, 100 and 200 µM) on GUS expression on two stone pine embryogenic lines 1F11 (up) and 7F11 (bottom).
Abbreviations: AS: Acetosyringone; GUS: gusA expression

Table 1: Effect of AS concentration on GUS expression in 1F11 and F11 embryogenic lines of Pinus pinea. Data are the mean ± SE of at least four 
measurements. Values with different letters are significantly different according to Tukey´s test (p≤0.05).

Mean number of GUS foci/plate

AS concentration (µM)

Embryogenic line 0 100 200

1F11 0.0 ± 0.0 b 270.7 ± 116.9 b 646.7 ± 64.9 a

7F11 77.2 ± 49.9 b 85.7 ± 49.8 b 277.5 ± 75.1 b

Abbreviations: AS: Acetosyringone; GUS; gusA expression; SE: Standard Error  
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phenolization, which may vary within the time that the two trials 
were performed, affecting differently to the interaction between 
A. tumefaciens and plant cells [21,30]. 

CONCLUSION 
Here we present for the first time a protocol for DNA transfer 

into Pinus pinea embryogenic lines that includes: a) The use of 
AGL1 strain harboring the pTAB16 plasmid grown at a bacterial 
OD600 of 0.8; b) the centrifugation and resuspension in MS liquid 
medium with 200 μM AS; c) five minutes infection with an initial 
one minute vacuum; d) the regeneration of transgenic lines, 
after 3 days co-culture, on selection medium with 1 mg/l PPT. 
In plasmids with nptII gene, the selection medium must include 
5 mg/l Kan. This protocol opens up significant possibilities for 
genetic improvement of Pinus pinea selected lines.
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